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bstract

A method for automatic detection of mammographic masses is presented. As part of this method, an enhancement algorithm that improves

mage contrast based on local statistical measures of the mammograms is proposed. After enhancement, regions are segmented via thresholding
t multiple levels, and a set of features is computed from each of the segmented regions. A region-ranking system is also presented that identifies
he regions most likely to represent abnormalities based on the features computed. The method was tested on 57 mammographic images of masses
rom the Mini-MIAS database, and achieved a sensitivity of 80% at 2.3 false-positives per image (average of 0.32 false-positives per image).

2008 Elsevier Ltd. All rights reserved.
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. Introduction

Breast cancer is the most common form of cancer in the
emale population, affecting one of approximately 11 women
t some stage of their life in the Western world [4,19]. As with
ny form of cancer, early detection of breast cancer is one of the
ost important factors affecting the possibility of recovery from

he disease. Early detection of breast cancer can be achieved
hrough mammography screening programs assisted by comput-
rs [7]. Over the past one and a half decades, several researchers
ave studied and proposed methods for computer-aided detec-
ion and classification of abnormalities related to breast cancer
n mammograms.

Several methods have been proposed for the detection of
umors in mammograms. In general, these methods are a com-
ination of image processing techniques and pattern recognition
lgorithms. Some researchers have approached the problem of
umor detection by devising methods to detect all types of masses

circumscribed, spiculated, and ill-defined), while others have
ocused their efforts on the detection of masses of a particu-
ar type or with a diagnosis of malignancy. A brief review of
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nalysis

he methods that are more relevant to this study is provided
elow.

Kegelmeyer et al. [12] investigated the use of a computer
ision method as a second reader for the detection of spiculated
esions on screening mammograms. Their method first assigns
o each pixel in an image a probability of being suspicious based
n five features: analysis of local oriented edges and four Laws’
exture energy measures [14]. The probability of each pixel is
omputed via a binary decision tree. Then, the final selection
f suspicious regions is performed through spatial filtering and
dge detection. Their method achieved 97% per-image sensitiv-
ty and 82% per-case specificity (from a range of zero to five false
ositives (FPs) per image). Some disadvantages of the method
resented by Kegelmeyer et al. are that the algorithm is compu-
ationally expensive and was designed to detect only spiculated
esions; and that their study included a relatively small dataset
ith only 36 positive cases and 49 negative cases.
Polakowski et al. [24] presented a model-based vision algo-

ithm to detect and classify masses in digitized mammograms.
heir algorithm consists of five modules, two of which perform

he detection of masses and the reduction of FPs prior to classi-
cation. Their first module, the focus of attention module, uses
difference of Gaussians (DoG) filter followed by thresholding
o select regions of interest (ROIs). Their second module, the
ndex module, produces an approximate mask of the mass in each
OI and reduces the number of false ROIs based on the area,
ontrast and circularity of the masks. Polakowski et al. tested
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heir algorithm on a database containing 272 images (includ-
ng 36 malignant and 53 benign mass images), and reported
sensitivity of 92% in locating malignant ROIs (33 out of 36
alignant masses correctly located), with an average of 2.36 FPs

er image after the first two modules. Including the rest of their
odules (in charge of feature selection, feature extraction, and

lassification), the number of FPs was reduced to 1.8 per image.
isadvantages of this method are that the parameters of the algo-

ithm are dependent on characteristics of the database used; the
tudy was focused on finding only medium-sized masses; and
ue to the use of all the data for training and testing, the results
eported may be optimistically biased.

Christoyianni et al. [5] presented a method for fast detection
f circumscribed masses in mammograms. Their method per-
orms classification of mammographic regions into tumorous
nd healthy tissue via a radial basis function neural network, and
hen provides the location of the masses by employing sub-image
indowing analysis. For image preprocessing, Christoyianni et

l. applied a sharpening filter to maximize the contrast between
asses and local background. They reported results of recog-

ition of abnormal tissue of 90.9%, 62.5%, and 33.3% in fatty,
landular, and dense tissue, respectively. The obvious disadvan-
age of this method is that it is highly sensitive to the background
issue. A second disadvantage is that it was designed to detect
nly circumscribed masses.

Mudigonda et al. [18] presented a mass detection method that
erforms segmentation of objects based on isointensity contours
nd texture flow-field analysis. Their study included 43 masses
30 benign and 13 malignant) and 13 normal cases from the

ini-MIAS database [28]. Circumscribed and spiculated masses
ere present in both the benign and malignant classes, but no

ll-defined masses were included. Their method consists of two
tages. The first stage is in charge of the detection of masses, and
he second stage performs rejection of FPs via pattern classifica-
ion. The reported detection accuracy after the first stage is 74%
11 missed cases). The second stage achieved 81% sensitivity at
.2 FPs per image. However, considering that 11 masses were
issed in the detection stage, the overall detection sensitivity of

heir method reduces to 60% (26 masses detected out of 43 in
he test set) at 2.2 FPs per image.

Zheng and Chan [29] proposed a segmentation method using
he discrete wavelet transform and a multiresolution Markov ran-
om field as part of their detection algorithm, and used a binary
ecision algorithm to select suspicious areas based on features
enerated from the segmented regions. Their study included 322
ammograms from the MIAS database with a total of 37 masses.
ell-defined circumscribed masses and ill-defined masses were

ncluded, but not spiculated masses. The sensitivity of the algo-
ithm was reported as 97.3% but no operating point was defined.
nstead, only the average number of FPs was reported as 3.92
er image.

A density-weighted adaptive contrast enhancement (DWCE)
lter was presented by Petrick et al. [21] as part of a mass-

etection algorithm including Laplacian-of-Gaussian edge
etection and morphological feature classification. The DWCE
lter was later used with improved results in other mass detec-

ion algorithms [22,23]. The revised procedure [23] included a

h

r
n
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ocal border refinement procedure and characterization of struc-
ures based on morphological and textural features. Petrick et
l. tested this algorithm on a dataset including 175 malignant
asses and 149 benign masses. Their reported detection rate
as 84% of individual malignant masses and 70% of benign
asses (77.47% of masses detected overall), with an average of

.5 marks per mammogram.
In this paper, a method for the detection of masses in mam-

ograms is proposed. This method incorporates some of the
dvantages of the algorithms described in the literature (such
s a modular design, employment of features for reduction of
alse positives, etc.) while avoiding some of the identified draw-
acks (such as dependence of the algorithm parameters on the
atabase, a high computational complexity, etc.). Our interest
s focused on the detection of masses, either benign or malig-
ant, and whether well-defined circumscribed, spiculated, or
ll-defined masses.

The proposed method is divided into three main stages. The
rst stage is a mammogram enhancement procedure that has the
bjective of improving the segmentation of the distinct structures
n the mammogram when performed via simple conversion to
inary images at multiple threshold levels (Section 3.1). Our
nhancement algorithm is different from others in the literature
n that it computes the parameter of the enhancing function in
n adaptive manner, based on local statistics of the pixels in the
ammographic image.
The second stage consists of segmentation and feature extrac-

ion steps (Section 3.2). In this stage, regions are segmented and
everal shape and gray-level characteristics of the regions are
omputed.

Finally, in the third stage, a ranking system is employed to
elect suspicious regions (Section 3.3, region selection). The
anking system is a novel approach to the problem of region
election (i.e., the elimination of FPs) that does not require
raining, and implements a type of on-the-fly feature selection.

The rest of this paper is organized as follows: in Section 2,
e describe the materials employed in this study (database and

oftware). In Section 3, we present in detail our methodology
or mass detection. Experimental results and discussions are pre-
ented in Section 4. Finally, conclusions and directions for future
ork are given in Section 5.

. Materials

The database of mammograms used in this study is known as
ammographic Image Analysis Society (MIAS) Mini Mammo-

raphic Database [28]. In the Mini-MIAS database, the MIAS
atabase (an earlier version digitized at 50 �m pixel size) has
een downsampled to 200 �m pixel size and clipped/padded
o that every image is of size 1024 × 1024 pixels. The

IAS database has been used in several research studies
reviously [5,6,15,18,21,27,29,30] and could be considered
s a benchmark database. The database is available from:

ttp://peipa.essex.ac.uk/info/mias.html.

The database is arranged in pairs of films, where each pair rep-
esents the left (even filename numbers) and right (odd filename
umbers) mammograms of a single patient, in mediolateral

http://peipa.essex.ac.uk/info/mias.html
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Table 1
Characteristics of the MIAS database of mammograms

(1) MIAS database reference number.
(2) Nature of background tissue:

Fatty
Fatty-glandular
Dense-glandular

(3) Class of abnormality present:
Calcification
Well-defined/circumscribed masses 25 cases, 21 benign
Spiculated masses 19 cases, 11 benign
Other, ill-defined masses 15 cases, 7 benign
Architectural distortion 19 cases, 9 benign
Asymmetry, 19 cases, 6 benign
Normal, 207 cases

(4) Severity of abnormality:
Benign 54/115 cases
Malignant 61/115 cases
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5) Abnormality location: x,y image coordinates of center of abnormality.
6) Approximate radius (in pixels) of a circle enclosing the abnormality.

blique (MLO) views. There are a number of variables that
haracterize each mammogram, as shown in Table 1.

There is a total of 322 cases; of these, 207 are normal, while
he other 115 possess one or more abnormalities with diagno-
is according to the statistics in Table 1. One of the cases with
circumscribed mass has missing information on the location

f the mass (MIAS reference number mdb059). This version
f the database is not suitable for experiments on detection of
icrocalcifications because of the resolution to which it has been

igitized. Ideally, the resolution for experiments on microcal-
ifications should be 50 �m per pixel. However, the database
s useful for experiments on detection of the other types of
bnormalities listed above.

The mammograms were digitized from film, and because of
his, artifacts are present in some of the images that can affect
he processing, but not severely. Besides digitization artifacts,
he presence of labels on the film, as well as perforations and
ape on some of the films and the incorrect placement of the film
n the scanner when it was digitized can also affect the process-
ng of the images. It is assumed that mammograms obtained in

ore recent screening programs, through the use of conventions
or X-ray imaging of the breast region and modern equipment,
hese problems will disappear. Thus, we do not discuss meth-
ds for the elimination of the artifacts or other unexpected
lements.

The complete method presented in this paper was imple-
ented in MATLAB [16] version 7, and makes extensive use

f the Image Processing Toolbox (version 5.2). Some of the
unctions for computation of shape properties were taken from
hapter 7 of Nixon and Aguado [20].

. Methodology for mass detection

The methodology used consists of three main stages. In the

rst stage the images are enhanced to make all structures equally
etectable (or approximately equally detectable). In the second
tep, the enhanced images are segmented into distinct regions
hrough thresholding at multiple levels, and a number of fea-

o

(
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ures are computed from each one of the regions present at each
egmentation level. The third stage is the selection of suspicious
egions based on their features and employing a ranking system.
ach of these stages is described in detail below.

The pectoral muscle in most MLO views of mammograms
ppears as the predominant density region, and can affect nega-
ively the results of image processing methods (see, for example,
eference [18]). For this reason, the region representing the pec-
oral muscle was manually removed from all the images prior
o any further processing. The identification and removal of
he pectoral muscle, as well as the identification of the breast
oundary, are problems on their own that have received the atten-
ion of researchers in the past but are disregarded in this study.
he reader interested in these problems is referred to references

1,8,9,11].

.1. Mammogram enhancement

One of the difficulties that has to be overcome for a successful
etection of masses in mammograms is caused by the difference
n brightness of the objects in the mammograms. This difference
s due to the difference in density of the tissue that absorbs the
-ray radiation. This effect is the useful property of the mam-
ographic technique, since it allows the separation of objects
ith different densities; but it also affects negatively regions
ith lower average density. Density is not completely uniform

cross the whole breast, and the average image intensity is lower
t the boundaries of the breast [2]. Depending on the detection
lgorithm, this effect may increase the difficulty of detecting
asses that are located near the breast boundary. Furthermore,
hen the density of the parenchyma is high, masses with a lower
ensity appear with low negative contrast in the mammograms.
ften such masses are missed by algorithms that use the bright-
ess level of the structures as their main feature for detection.
ther factors that increase the difficulty of obtaining a successful
etection are a low signal-to-noise ratio at the edges of masses
particularly of malignant masses) and complex structures in the
ackground of the mammogram.

In an attempt to alleviate the situations described above,
n image enhancement procedure is proposed. The objective
f this procedure is to increase the contrast between mam-
ogram structures and their background, while providing a

elatively uniform intensity to all of the structures. Previous stud-
es [17,21,23,26] have demonstrated the benefits of applying a
ontrast enhancement processing driven by the local characteris-
ics of the mammograms. In our contrast enhancement routine,
tatistical measures of the pixel intensities in local neighbor-
oods are employed to automatically set the parameters of the
ransform applied to each pixel. In order to obtain effective
nhancement over all mammographic structures of different
izes, the enhancement routine is wrapped into a multiscale pro-
essing framework. Application of the enhancement procedure
ver one image is illustrated in Fig. 1. The procedure consists

f four main steps:

1) Eliminate background and scale down the image, producing
a multi-scale representation (three scales were used, each
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Fig. 1. Enhancement procedure. Refer to the te

one producing an image half the size of the image in the
previous scale).

2) Produce a parameter matrix for each scale.
3) Each scale is processed in blocks, which are sent to the non-

linear function together with the corresponding parameter
value. Application of the nonlinear function produces one
enhanced image per scale.

4) Scale up the images back to the original scale, and combine

them (linear combination) to produce the final result.

The background of the mammograms is eliminated by sub-
traction of the opened image from the original image (a

s
b
f
t

an explanation of each of the steps illustrated.

orphological operation known as the top-hat operation). How-
ver, prior to the substraction, a Gaussian filter is applied to
he opened image to soften any edges and better preserve small
tructures. The structuring element used in the top-hat operation
s a disk of radius rtop = 80 pixels. This structuring element was
hosen after experimentation and examination of the distribu-
ion of the masses size (Fig. 2). To clarify, notice that most of
he masses (about 88%) have a size below the size of the chosen

tructuring element (radius of 80 pixels). These masses will not
e substracted by the top-hat operation, and will be preserved
or later detection. The masses that are bigger than the size of
he structuring element will be (partially) substracted. The size
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Fig. 3. Block processing with nonlinear function. Each [N × N] block is centered
on the pixel at location (i, j). The value of the parameter γ for each block is stored
i
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Fig. 2. Distribution of masses in database according to size.

f a radius of 80 pixels corresponds approximately to the inflex-
on point in the histogram of mass-sizes (only a few masses are
igger than the structuring element selected, and most of these
re in fact much bigger than the structuring element). Because
f this, and due to the intensity profile of large masses, the cen-
ral part of these will survive the operation, thus enabling their
etection by the algorithm.

A nonlinear function is applied on each block of pix-
ls. The nonlinear function used is a mapping given by: y =
(x − lx)/(hx − lx)]γ (hy − ly) + ly, where lx and hx are the
owest and highest intensity values of the input matrix x, respec-
ively, and, similarly, ly and hy are the lowest and highest
ntensity values of the output matrix y. Notice that, if the inten-
ity limits of the input and output matrices are set to the range
0, 1], the nonlinear function is reduced to: y = xγ . The param-
ter γ is given by the value of the element at the centre of the
lock in the corresponding parameter matrix. The parameter
atrix is produced based on on local statistical measures in the
ammograms. This is further explained below.
The moving-window application of the nonlinear function

s illustrated in Fig. 3. The image matrix is processed one
lock of [N × N] pixels at a time; each block is centered on
he pixel at location (i, j), where i = {1, 2, . . . , Rows}, j =
1, 2, . . . , Cols}, and [Rows × Cols] is the size of the image
eing processed. The size of the processing window, N = 31,
as chosen after examination of the structures present in the
ammograms, their size (see Fig. 2), and how they were modi-
ed by the scaling function. The size of the processing window

s not critical, but some considerations must be observed. One
ondition on the size of the processing window is that it should
e an odd number. This is computationally attractive because
indows of such sizes are centered on individual pixels, thus

implifying the application of the function. Notice as well that
he processing window has a relative size, depending on the scale
f the image that is being processed. In our multi-scale repre-
entation, the scale is increased by a factor of 2 at each iteration

the image becomes half the original size), and thus the size of
he processing window is relatively increased by the same factor
although the actual size of the window remains constant). It was
bserved that it is not required that structures (such as masses)

s

b
v

n a separate matrix. The center pixel of the output of the nonlinear function
ecomes pixel (i, j) of the enhanced image.

e completely contained by the window for the enhancing oper-
tion to be efficient. This is because the form of the function is
ynamically adjusted based on on the statistical measures of the
mage, which are computed in smaller neighbourhoods than the
ize of the processing window (see below).
The values of the parameter γ used by the function on each
lock is stored in a second matrix, the parameter matrix. The
alues in the parameter matrix are obtained by mapping the
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Table 2
Mapping from the statistical measure space (μB, σB) into the parameter space
(γ)

Condition Value range Numerical value

μB < μ̄ and σB < σ̄ γ > 1 1.2
μB < μ̄ and σB ≥ σ̄ γ ≈ 1 0.8
μB ≥ μ̄ and σB < σ̄ γ < 1/2 0.4
μB ≥ μ̄ and σB ≥ σ̄ γ < 1 0.6
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B and σB represent the mean and standard deviation of the pixels in a block,
espectively. μ̄ and σ̄ represent the average mean and standard deviation of the
ixels in the whole breast region.

ocal statistical measures (mean and standard deviation) of the
mage matrix. First the statistical measures are computed in
mall neighborhoods ([5 × 5] pixels), and then the rules given in
able 2 are applied. To complete the computation of the param-
ter matrix, a Gaussian filter is applied to smooth the boundaries
etween the adjacent regions with different values. The condi-
ions in Table 2 correspond to different mammographic tissues.
mooth bright regions, like the tissue found in the interior of a
ass, show a large mean value and a small standard deviation;

eterogeneous regions, like the glandular tissue in the mammo-
rams, possess a relatively large standard deviation and mean
alues, etc. As illustrated in Fig. 1, the shape of the curve map-
ing the intensity levels in the nonlinear function is specified by
he parameter γ . If γ < 1 (strictly, 0 ≤ γ < 1), the mapping is
eighted toward higher output values. If γ > 1, the mapping is

eighted toward lower output values. When γ = 1 the mapping

s linear. Thus, the range of values assigned to γ in Table 2 were
elected in such a way that the mapping improves the contrast of
he different tissues. For example, in the case of smooth bright

t

b
g

Fig. 4. Example of the effect of the proposed enhancement ro
ig. 5. The histogram of the original image (dashed) and of the enhanced
mage (solid). The value for zero gray-level has been removed for improved
isualization of the details of interest.

egions the mapping should be weighted toward higher output
alues so that the intensity of pixels with relatively low intensity
s increased; this improves the smoothness of the region by mak-
ng the intensity values more uniform. The specific numerical
alues were selected experimentally. The range of the input lev-
ls is the range of values in the block of pixels being processed;

he range of the output levels was set to [0,1].

Fig. 4 illustrates the effect of the enhancement routine. It can
e observed that all structures at different scales are easily distin-
uishable. The histograms of the original and enhanced images

utine. A: Original mammogram. B: Enhanced version.
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properties are area and perimeter. The minor axis length and
major axis length, as well as the orientation and eccentricity are
computed from an ellipse with the same second moments as the
region. The equivalent diameter is of the circle with the same

Table 3
Properties extracted from the regions segmented

1. Area
2. Perimeter
3. Major axis length
4. Minor axis length
5. Eccentricity
6. Orientation
7. Equivalent diameter
8. Solidity
9. Extent
10. Compactness
11. Dispersion-I
12. Dispersion-II
13. Mean gradient within region
14. Mean gradient of boundary
10 A. Rojas Domı́nguez, A.K. Nandi / Computerize

re compared in Fig. 5, where the pixel-count of level zero has
een eliminated to enable the appreciation of the other levels.
rom the histogram of the enhanced image, it is easy to under-
tand why this image is more suited for a multilevel thresholding
egmentation process than the original image: in the histogram
f the enhanced version, as one moves from the top of the gray-
evel scale towards the lower values, there is a gradual increase
n the number of pixels at a given gray-level. This supports the
dea of employing a decreasing threshold value to separate por-
ions of the image in the form of regions that will increase in
ize as the threshold value is decreased. In comparison, if the
istogram of the original version of the image is examined, one
an observe that the number of pixels reaches a maximum much
arlier than in the enhanced version; the effect is that many of the
egions being segmented merge at an earlier stage than desired
uring the multilevel thresholding process.

The enhancement routine proposed is suitable and very effec-
ive on most mammograms. The exceptions are mammograms
hat present homogeneous regions with very high density. In such
ases, the abnormalities can be obscured by the parenchyma and
how very similar intensity levels. The enhancement algorithm
rovides limited (though still appreciable) improvement in such
ases.

.2. Segmentation and feature extraction

The enhanced images are converted to binary images through
hresholding at different values starting from the top level. At
ach iteration, a binary image is produced by setting the value
f pixels that are above the current threshold in the mammo-
ram to one, while all other pixels are set to zero. The process
ontinues until the whole breast region is segmented or until the
hreshold value reaches a chosen minimum. This segmentation
echnique has been used previously by Mudigonda et al. [18]
here it was called density slicing. It was found that for the

nhanced images in this study, with gray values in the range [0,
], 30 levels with a step size of 0.025 were adequate to segment
ll the mammograms. That is, for each mammogram, the algo-
ithm produced 30 binary images with the segmented regions
t the corresponding level of segmentation: 1 − 0.025l, where
= 1, 2, . . . , 30.

Once the segmentation procedure described above is com-
leted, the binary images are filtered with a Gaussian smoothing
lter (parameters μ = 9 pixels and σ = 5 pixels) to eliminate
oise (any isolated pixels) and split regions that are joined by
ingle pixels or by a small group of pixels. Next, all the holes
n the existing regions (if there are any), are filled automati-
ally. Finally, all regions with a pixel count of less than 150
ixels are eliminated because they are well below the size of
he smallest mass in the Mini-MIAS database and it is unnec-
ssary to process them. The elimination of regions with pixel
ounts of less than 150 pixels was performed to save computing
ime. The specific value of 150 pixels was chosen after consid-

ring that the smallest mass in our database has an approximate
adius of 17 pixels, which, if the mass was a perfect circle,
ould roughly correspond to a pixel count of 900 pixels. Fig. 6

llustrates the set of regions extracted from the mammogram

1
1
1
1

Fig. 6. Contours of regions segmented at multiple threshold levels.

n Fig. 4 B. For illustration purposes, only seven levels (but
ncluding the whole range of segmentation values) are presented,
ach in a different colour, and each region is indicated by its
ontour.

To complete this stage of the detection method, a set of prop-
rties of the remaining regions are computed and stored together
ith the binary image containing all regions at the correspond-

ng segmentation level. To define which pixels belong to the
ame object and which are part of two adjacent objects, four-
onnectivity was employed. The properties obtained from each
egion are listed in Table 3.

Most of the properties are shape descriptors; the basic shape
5. Gray value variance
6. Edge distance variance
7. Mean intensity difference
8. Fractal dimension
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rea as the region. Solidity is the proportion of the pixels in the
onvex hull that are also in the region; another similar measure
s extent, which is the proportion of pixels in the bounding rect-
ngular box of a region that are also in the region. Details about
hese and other shape properties can be found in Chapter 11 of
onzales et al. [10].
Compactness of a shape is the ratio of its squared perimeter

o its area. Dispersion, also known as irregularity, measures the
ensity of the region. Dispersion-I is defined as the ratio of the
ajor chord length to area, while Dispersion-II is defined as the

atio between the radius of the minimum circle enclosing the
egion and of the maximum circle that can be contained in the
egion. The implementation of these properties is described in
hapter 7 of Nixon and Aguado [20].

Properties 13–17 were used by Zheng and Chan [29], and
efore them by Qian et al. [25] in a study of feature extraction
or mass detection, and are formally defined by them.

The mean gradient within region is the mean value of the
radient of the pixels inside the region; the mean gradient of
oundary is the mean value of the gradient of the pixels on the
oundary of the region. Gray value variance is a measure of the
moothness of the region. Edge distance variance is a measure
f rotational symmetry and shape. Mean intensity difference is
measure of the difference in gray values outside and inside the

egion. All of these measures were computed using the gradient
nd intensity values of the enhanced mammogram.

Finally, the fractal dimension is a measure of the extent of
elf-similarity of an object when examined at different scales.
his measure was computed using an adaptation of the method
f Caldwell et al. [3], from the original mammogram. The fractal
imension of a 3-D surface can be obtained using

(ε) = λε2-D (1)

here A(ε) represents the surface area measured with a square
f side ε, λ a scaling constant, and D is the fractal dimension,
hich is related to the slope of the plot of log(A(ε)) versus log(ε).

n particular, Caldwell et al. considered the 3-D surface of the
mage (i.e., interpreting the gray value as height) to be a set of
ectangular columns, where the top of each column is a square
ith side of length ε. They computed the area of the surface as

A(ε) =
∑
x,y

ε2 +
∑
x,y

ε
[|I(x, y) − I(x + 1, y)|

+ |I(x, y) − I(x, y + 1)|]
(2)

here I represents the intensity of a pixel. In the present study,
he fractal dimension was computed locally using a square block-
rocessing window with a side of length equal to 40 pixels. The
rea of this window was calculated repeatedly with square neigh-
orhoods of side ε = 3, 5, 7 and 9 pixels. The fractal dimension
or all pixels in each processing window was set to the slope of

he corresponding plot of log(A(ε)) versus log(ε). Finally, the
ractal dimension of any region overlapping two or more of the
rocessing windows was computed by using the average of the
ractal dimension in the overlapping region of the windows.

s
p
t
d

ig. 7. The concept of a scoring area: if the absolute value of the difference
etween property j of a region and the mean of property j over all masses is
nside the scoring zone, the region receives a score of 1.

.3. Selection of suspicious regions

The selection of suspicious regions is performed by means
f a ranking system. Ideally, all the properties of the regions
epresenting abnormalities would be located within a relatively
ompact range of values, whereas the properties of regions cor-
esponding to normal tissue would be outside this range. Thus,
he detection of masses would be achieved via a selection of the
ppropriate threshold values for each of the features. In practice,
here will always be outliers from both of the classes (i.e., nor-

al and suspicious regions), and the range of values describing
uspicious and unsuspicious regions will overlap, often signif-
cantly, making the selection of the optimal threshold values a
ifficult task or the use of simple linear discrimination rules alto-
ether unsuitable. The ranking system used in this study is based
n the assumption that even when not all the properties of a sus-
icious region will be concentrated around a certain value and
ithin a fixed range, most of them will be so concentrated. By

onsidering how many of the properties of each given region are
oncentrated around a reference value and within a fixed range
let this be called the scoring zone), a rank can be assigned to
ach region. The reference value for each property is the mean
alue of that property computed over the set of masses, and is
ocated at the center of the scoring zone. The range defining
he extent of the scoring zone is the standard deviation of the
roperty (again, computed over the set of masses) times a reg-
larization factor α; this is illustrated in Fig. 7. The reference
eans and standard deviations were obtained using the ground

ruth of the masses in the Mini-MIAS database as a guide: a
ontour of each mass was manually drawn and the properties of
he mass regions were computed to obtain the desired statistical

easures. Note that, before the computation of the rank or any
tatistical measure, the values of all the properties were scaled
o be within the range [0, 1].

To compute the rank of the i-th region, the absolute value
f the difference between the set of properties x̄i and the set
f means μ̄ is compared against the limit of the scoring zone,
σ̄, where σ̄ is the set of standard deviations. A score of 1 is
iven to the region for each difference that is lower or equal to
he corresponding limit (i.e., whose value is inside the scoring
one), and zero for each difference that is larger than the limit
outside the scoring zone). The scores are stored in a vector of
s and 0s, Z̄i, that works like a scoring card: the vector shows
ow many and which properties of each region are inside the

coring zone. The length of the vector is equal to the number of
roperties being used. To compute the final rank of each region,
he scoring system has to be compensated for differences in the
ispersion of the statistical distribution of the properties. That
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Table 4
Percentiles of the ratio of contrast measure of enhanced mammograms to contrast
of original mammograms
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itive (FP). A similar definition of a TP was used by Mudigonda
et al. [18] and part of the method of Petrick et al. [22]. Since
mass-detection algorithms work in the absence of a ground-truth,
an automatic mechanism for detecting oversegmented regions
12 A. Rojas Domı́nguez, A.K. Nandi / Computerize

s, we would like to reflect the fact that some of the properties
ave more discriminating power than others. This is achieved
y dividing each element in the vector Z̄i by the correspond-
ng value of σ̄, and then computing the Euclidean norm of the
esult; the rank of the i-th region is the norm, mathematically
xpressed as

Z̄i = [|x̄i − μ̄| ≤ ασ̄],

ranki = ‖Z̄i/σ̄‖, (3)

here we use [·] to clarify that Z̄i receives the outcome of the
est condition |x̄i − μ̄| ≤ ασ̄, which is 1 if the condition is true
nd zero otherwise. The similarity between this ranking scheme
nd the definition of the normalized Euclidean distance between
wo multidimensional random vectors given by

i =
√√√√∑

j

(xi,j − μj)2

σ2
j

(4)

hould be evident. The difference is that, in the ranking rule, the
umerator of the elements in the sum of (4) are first converted
o one of two possible values: the value of the numerator is set
o one if the corresponding difference is less than or equal to a
hreshold (ασj for the j-th property) or to zero if the difference
s larger than the threshold.

Once the ranks of all regions are computed, the algorithm
elects the ones with high ranks up to a desired number of
egions. Note that the choice of the number of regions that are to
e returned by the algorithm does not affect the processing time,
ecause the ranks of all the regions must be processed before
ny number of them is selected.

. Results and discussion

.1. Results

The algorithm for mass detection was tested on a selection
f mammograms from the Mini-MIAS database. The number
f masses in the Mini-MIAS database is 59, which includes 25
ircumscribed masses, 19 spiculated masses, and 15 ill-defined
asses, as shown in Table 1. However, one of the cases is miss-

ng ground truth information and was not considered in the test
case mdb059). Another mammogram (case mdb005) shows two
bnormalities which appear as a single object in the MLO view;
hus, it was considered as a single mass. The detection method
as tested, therefore, on 57 masses including circumscribed,

piculated and ill-defined masses.
In order to quantify the effect of the proposed enhancement

rocedure a contrast measure was computed over the original
nd the enhanced mammograms considering only the portions
f the image containing the mass in each case. The contrast
easure is [17]:
= f − b

f + b
(5)

here f is the mean gray-level of the foreground region (mass)
nd b is the mean gray-level of the background region (tissue sur-

F
i
t

in. First qt. Median Mean Third qt. Max.

.526 3.134 3.901 4.652 5.874 14.472

ounding the mass). Foreground and background were defined
sing the manually segmented regions of the masses. The ground
ruth of the mass is the foreground region; the background was
btained by subtracting the ground truth from a dilated version
f itself, producing a band of pixels approximately 20 pixels
ide around the ground truth region. Using the contrast of the

wo sets of mammograms (original and enhanced), a ratio of
he enhanced contrast to the original contrast was obtained. The
ummary statistics of this comparison are given in Table 4.

The average of the ratio between the contrast measure of the
nhanced mammograms to the contrast of the original mammo-
rams is 4.65, with a standard deviation of 2.41. The minimum
ncrease in contrast obtained is 1.52 times the original con-
rast. These results show that, according to the measure defined
bove, the proposed enhancement routine does in fact improve
he contrast of the regions of interest.

For the detection step, a true positive (TP) was recorded for
segmented region when the region overlapped the centroid

f a mass, represented by a circular area with a radius of five
ixels (the center of each mass is provided in the Mini-MIAS
atabase). Otherwise, the region was considered as a false pos-
ig. 8. Final result of the detection method for case mdb019. The solid line
ndicates the region as determined by the algorithm; the dashed line is the ground-
ruth from the Mini-MIAS database.
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Table 5
Subsets of properties

Subset Properties (see Table 3)
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7–18
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annot be included. However, special care was taken to ensure
hat (excessive) oversegmentation did not occur in the regions
abeled as TPs, by visual inspection of each TP recorded.

The output of the algorithm is the location of the region(s)
elected, indicated by a circle of radius equal to the major axis
ength of the selected region(s). Fig. 8 illustrates this for the
ammogram of case number mdb019 with one region selected,
hich corresponds to the mass. There are no FPs in this example.
he output of the algorithm is shown with a solid line; the dashed

ine is the ground-truth as given in the Mini-MIAS database, and
s shown for comparison.

The algorithm was tested with four sets of properties from
able 3 to test their discrimination power. One set included all the
roperties, whereas the other three included a subset of these,
s shown in Table 5. Subset A included all properties except
he very basic shape descriptors. Subset B included only the
easures corresponding to gray-level characteristics. Subset C

ncluded only the more advanced shape descriptors.
The value of the parameter α for the ranking system described

bove was chosen after experimentation over a range of values.
he procedure to select the value of α consisted of running the

egion-selection step of the mass-detection algorithm with dif-
erent values between 0 and 3 in steps of 0.1. The value that
roduced the best performance overall was selected. In this way,
he value of α was fixed to 1.9.

Fig. 9 presents a plot of the true positive (TP) fraction

chieved using each of the four sets of properties versus the
umber of FPs per image, in the range 1–21. Only one mass was
ot detected within this range of FPs using subset C. The plots
btained using all the properties and subset A are almost identi-

ig. 9. True positive (TP) fractions versus false positives (FPs) per image.
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al and show the highest performance. The plots of subsets B and
show poorer performance, that of subset C being the worst.

or a TP fraction of 0.8, the number of FPs per mammogram is
.3 when using the set of all properties as well as when using
ubset A. Note that the number of FPs reported is the maximum
er mammogram, not the average over all the mammograms (the
verage is 0.32 FPs per image).

.2. Discussion

The mammogram enhancement procedure proposed in this
aper works under two assumptions. The first assumption is
hat an object in a given image exists only if the contrast (that
s the difference in the gray-level) between the object and its
ackground is large enough; or there is an edge delimiting the
oundary of an object whose brightness is the same as its back-
round. The second assumption is that masses in mammograms
re objects that share some characteristics. The first assumption
mplies that contrast and edge information should be enhanced
nd used in combination to improve mass detection. The second
ssumption indicates that not every structure must be equally
nhanced, or the segmentation of masses will not improve. Hav-
ng these two assumptions as guides, the actual implementation
f the enhancement algorithm would differ greatly between
esearchers depending on their expertise, their programming
kills, preferred processing techniques, etc. Here, one implemen-
ation has been presented, which nevertheless contains aspects
hat can be improved. For example, at this stage our implemen-
ation has not been optimized for speed. This optimization is
ecessary if the algorithm is to be used in a screening program.
urthermore, the inclusion of adaptive methods for the auto-
atic selection of the critical parameters of the algorithm, such

s the regularization factor α, could make the algorithm robust.
The detection of masses used in this study follows the gen-

ral scheme of first finding all possible distinguishable regions,
nd then sorting out which of them actually represent masses in
he mammograms. This scheme has the disadvantage that a very
arge number of regions must be processed, which is costly in
omputing time and resources. The clear advantage is that the
nitial sensitivity is high; other advantages are that the design of
he algorithm is simple and the implementation does not require
omplex computations. The most time-consuming operation is
he computation of the properties of all the regions segmented.
he time used in this operation can be reduced by either reduc-

ng the initial number of regions or the number of properties
sed. Other schemes with different advantages should be investi-
ated in combination with the enhancement procedure proposed
ere. For example, Zheng and Chan [29] make use of a fractal
imension measure to eliminate areas of mammograms with no
asses, thus significantly reducing the number of regions to be

rocessed.
The ranking system used in this study works at two levels

imultaneously: the scoring system itself works at a general

evel; it is a rough or fuzzy way to determine the best candidates
that is, the most suspicious regions), like a sieve with large
oles. The scaling of the scoring vector by the vector of stan-
ard deviations is a compensation step that works at a second and
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ner level, like a second sieve with smaller holes. The ranking
ystem, as a whole, then performs a type of on-the-fly feature
election for each one of the images processed. Some of the
roperties computed from the regions are redundant (for exam-
le, the measure of compactness includes perimeter and area),
ut this amount of redundancy was allowed given the design
f the selection method. Kobatake et al. [13] used a method
imilar to our ranking system to select malignant masses. Their
ethod computes the Mahalanobis distance measure between

n input vector x̄ and the mean vector of two categories (1:
alignant mass and 2: others), D1 and D2. The detection rate of

heir system is controlled by comparing the ratio D1/D2 with
threshold value. Our method is different, in that it uses data

rom only one category instead of two; we assume a diagonal
ovariance matrix, and include an intermediate step that con-
erts the distances to binary values. In other words, the method
or region selection that has been presented is not a (hard)
lassifier.

. Conclusion and future work

A computer-aided method for the detection of masses in
ammograms has been presented. With a performance of 80%

f all types of masses in the test database being successfully
etected at 2.3 FPs per image (average 0.32 FPs per image), this
lgorithm compares well with other methods in the literature.
ombining this algorithm with other detection methods, refin-

ng the system for FP reduction, and including a feature selection
tep are being considered for future work.
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